
Data Elevator – Low-contention Data Movement in
Hierarchical Storage Systems

Bin Dong, Suren Byna, John Wu, Prabhat, Hans Johansen,
Jeffrey Johnson, Noel Keen
Lawrence Berkeley National Laboratory

Contact: SByna@lbl.gov

HiPC 2016, Dec 20th, 2016

§  Simulations
–  Multi-physics (FLASH) – 10 PB
–  Cosmology (NyX) – 10 PB
–  Plasma physics (VPIC) – 1 PB

§  Experimental and Observational
data
–  High energy physics (LHC) – 100 PB
–  Cosmology (LSST) – 60 PB
–  Genomics – 100 TB to 1 PB

§  Scientific applications rely on
efficient access to data
–  Storage and I/O are critical requirements

of High Performance Computing (HPC)

Data-driven science

FLASH

NyX

VPIC

LHC

LSST

Genomics

2 Data Elevator

Storage system transformation in HPC

3 Data Elevator

IO Gap

Memory

Parallel file system
(Lustre, GPFS)

Archival Storage (HPSS
tape)

IO Gap

Shared burst buffer

Memory

Parallel file system
(Lustre, GPFS)

Archival Storage (HPSS
tape)

Memory

Parallel file system

Archival storage (HPSS
tape)

Shared burst buffer

Node-local storage

Conventional Current
Eg. Cori @ NERSC

Upcoming
Eg. Aurora @ ALCF

Campaign storage

•  IO performance gap in HPC storage is a significant bottleneck
because of slow disk-based storage

•  SSD and new memory technologies are trying to fill the gap, but
increase the depth of storage hierarchy

Challenges of deep storage hierarchy

•  Modes of moving data between the layers
–  Offline: Stage out after writing the data

•  E.g., Cray DataWarp provides stage_in and stage_out commands
–  In applications: API for moving data

•  Cray DataWarp provides an API for moving data in and out of burst
buffers

–  Transparent caching
•  Burst buffer servers move data transparently

•  Challenges
–  Inefficiency : Existing methods for staging in/out data to/from burst

buffers (BB) compete for resources on BB servers
–  Burden on users : Users or applications have to explicitly make the

data movement decisions, which could lead to inefficiency
–  Limited to one level: Transparent caching is aware of a single level

storage

4 Data Elevator

Our solution: Data Elevator for moving data

5 Data Elevator

Memory

Parallel file system

Archival storage (HPSS
tape)

Shared burst buffer

Node-local storage

Campaign storage

•  Contributions
-  Low-contention data movement library for hierarchical

storage systems
-  Offload of data movement task to a few compute nodes

or cores
-  Data Elevator on NERSC’s Cori system

-  With a couple of science applications, demonstrated that
Data Elevator is 4X faster than Cray DataWarp stage_out
and 4X faster than writing data to parallel file system

•  Benefits of using Data Elevator
-  Transparent data movement: Applications using HDF5

specify destination of data file and the Data Elevator
transparently moves data from a source to the destination

-  Efficiency: Data Elevator reduces contention on BB
-  In transit analysis: While data is in a faster storage

layer, analysis can be done in the data path

Background – HDF5

§  HDF5 – Hierarchical Data Format, v5 developed and
maintained by The HDF Group
•  First version of HDF5 released in 1998

§  Open file format	
–  Designed for high volume or complex data
–  Parallel I/O library

§  Open source software
–  Works with data in the format

§  A data model
–  Structures for data organization and specifica&on	

6 Data Elevator

HDF5 is like …

7 Data Elevator

Background – HDF5 Virtual Object Layer (VOL)

8

•  Data Elevator uses VOL for
intercepting HDF5 calls

•  VOL
- Abstract HDF5 object storage to

enable developers to easily use
HDF5 on novel storage systems

- Binary instrumentation approach
allows intercepting HDF5 calls
without code changes

- Allows all HDF5 applications to
migrate to future storage systems
and mechanisms with no source
code modifications

Data Elevator

Background – Burst buffer on Cori system

9

Blade&&=&2&x&Burst&Buffer&Node&(2x&SSD)&

Lustre&OSSs/OSTs&
CN&

CN&

CN&

CN&

CN&

CN&

CN&

CN&

CN&

CN&

CN&

CN&

CN&

CN&

CN&

CN&

CN&

CN&

CN&

CN&

CN&

CN&

CN&

CN&

CN&

CN&

CN&

CN&

CN&

CN&

BB&
SSD&
SSD&

BB&
SSD&
SSD&

BB&
SSD&
SSD&

BB&
SSD&
SSD&

ION&
IB&
IB&

ION&
IB&
IB&

S
to
ra
g
e
&F
a
b
ri
c&
(I
n
fi
n
iB
a
n
d
)&

Storage&Servers&

Compute&Nodes&

Aries&HighHSpeed&Network&

I/O&Node&(2x&InfiniBand&HCA)&

InfiniBand&Fabric&

•  Fact sheet
-  Cori is a Cray XC40 system
-  144 burst buffer nodes
-  Each server has two Intel

P3608 3.2 TB NAND Flash
SSDs

-  Cray DataWarp® manages
the burst buffer
-  stage_in and stage_out

commands
-  BB API for programmatically

move data
-  Allows async data

transfers

Data Elevator

Data Elevator design

•  Implementation challenges
–  Transparently intercepting I/O calls
–  Moving data between storage layers

efficiently w/ low contention

10

Buffer
Burst

Simulatioin processes

API

f.h5.temp

f.h5

Computing Node

DEMT
f.h5, f.h5.temp, ...

Append
Redirected I/O Async Data Movement

PFS

IOCI

TEDM processes

HDF5/Others API MPI−IO

Data Elevator

•  Solutions
–  IOCI – IO Call Interceptor library - VOL
–  Transparent & Efficient Data Mover

processes – Concurrent MPI job

Metadata for managing the state of data

•  Metadata Table to manage the data movement status
–  Data written to BB
–  Data is written to BB
–  Request to analyze data and start analysis
–  All data reads are done
–  Data is being written to PFS
–  Data is moved to PFS

11

restart moving file

W

B

D

A

M

F

if error happens

analysis

no analysis

ha
s a

na
ly

sis

repeated

Data Elevator

Optimizations

•  Scalable and low-contention parallel data movement
•  Data Elevator processes run on compute nodes

•  Allows scaling up or down the number of data movement processes
•  BB server resources are entirely used for I/O

•  Overlapping data reads from BB and writes to PFS
•  Data is written to file system in chunks
•  Allows reading data from BB and writing to PFS can be overlapped

•  Stripe size alignment
•  Parallel file systems, such as Lustre, provide striping optimizations

•  Stripe size, stripe count, alignment, etc.

•  In transit analysis, while data is in a burst buffer level
•  Analysis jobs can poll the metadata table for availability of data

12 Data Elevator

Experimental set up

•  Platform – NERSC Cray XC40 system, Cori
•  Benchmarks and applications

•  VPIC – Plasma Physics code simulating magnetic reconnection
(solar weather)

•  CAMR – Climate Adaptive Mesh Refinement code simulating
climate at high resolutions (1km resolution)

•  Metrics
•  End-to-end execution time – Total execution time of the

application, including I/O and data movement
•  End-to-end data movement time – Time to move data from

memory to Lustre file system (final destination of the data)

13 Data Elevator

Data Elevator – Tuning space exploration

•  MPI-IO Collective (two-phase) vs. Independent modes

•  Overlapping BB reads w/ PFS writes

•  Striping alignment on PFS

14 Data Elevator

0	

5	

10	

15	

256	 512	 1024	

Ti
m
e	
(s
)	

Number	of	CPU	Cores	

Collec-ve	IO	 Independent	IO	

0	

5	

10	

15	

20	

Chombo-IO		 VPIC-IO	

Ti
m
e	
(s
)	

Overlapping	 Non-Overlapping	

0	

5	

10	

15	

Chombo-IO		 VPIC-IO	

Ti
m
e	
(s
)	

Striping	Allignment	
Non-Striping	Allignment	

Data Elevator – Tuning space exploration

•  Sharing compute cores vs. dedicated Data Elevator
nodes

•  Data Elevator size

•  Metadata overhead

15 Data Elevator

0	
0.05	
0.1	

0.15	
0.2	

0.25	

VPIC-IO	 Chombo-IO		

Ti
m
e	
(s
)	

Data	Evalator		
HDF5	Open/Close	

0	

5	

10	

15	

Chombo-IO		 VPIC-IO	

Ti
m
e	
(s
)	

1	:	1	 2	:	1	 4	:	1	

0	

5	

10	

15	

20	

25	

Chombo-IO		 VPIC-IO	

Ti
m
e	
(s
)	

Shared-Mode	 Disjoint	Mode	

Performance comparison with benchmarks

•  Staging out performance – Cray DataWarp vs. Data Elevator
•  1K procs
•  DataWarp – 144 nodes
•  Data Elevator – 64 processes
•  Data Elevator is faster than DataWarp by 14% to 22%

16 Data Elevator

0	

5	

10	

15	

20	

Chombo-IO		 VPIC-IO	

Ti
m
e	
(s
)	

DataWarp	 Data	Elevator	

1	

10	

100	

1000	

Chombo-IO		 VPIC-IO	

Ti
m
e	
(s
)	

Lustre	
DataWarp	/w	Command	
DataWarp	/w	API	
Data	Elevator	

Performance with Plasma physics simulation

•  Total execution time of running VPIC code for 20 time steps, writing
a file at the end of each time step – data write intensive workload

•  Data Elevator
•  1.7X faster than PFS
•  1.8X faster than DataWarp stage_out command
•  4.2X faster than DataWarp API

17 Data Elevator

0	
50	

100	
150	
200	
250	
300	

1024	 2048	 4096	 8192	 16384	

Ti
m
e	
(s
)	

Number	of	CPU	Cores	

Lustre	 DataWarp	Command	
DataWarp	API	 Data	Elevator	

0	 100	 200	 300	

Data	Elevator	
VPIC		+		Burst	

DataWarp		API		
VPIC		+	Burst	Buffer	

DataWarp	
VPIC	+	Burst	Buffer	

VPIC		+	Lustre	

Time	(s)	

Compu=ng	 Wri=ng	Data	 Moving	Data	from	BB		to	PFS	

1K cores

Performance with climate simulation

18 Data Elevator

0	 100	 200	 300	 400	

Data	Elevator	
CAMR		+	Burst	

DataWarp	API	
CAMR		+	Burst	

DataWarp	
CAMR		+	Burst	

CAMR		+	Lustre	

Time	(s)	

CompuBng	 WriBng	Data	 Moving	Data	from	BB	to	PFS	

0	

1	

2	

3	

4	

5	

1024	 2048	 4096	 8192	

Ti
m
e	
(s
ec
/G

B)
	

Number	of	CPU	Cores	

Lustre	 DataWarp	Command	
DataWarp	API	 Data	Elevator	

•  Total execution time of running CAMR code for 20 time steps,
writing a file at the end of each time step – compute intensive
workload

•  Data Elevator
•  4X faster than PFS
•  1.2X faster than DataWarp stage_out command
•  3.3X faster than DataWarp API

1K cores

Performance of in transit data analysis - Querying

19 Data Elevator

0	

100	

200	

300	

512	 1024	 2048	 4096	

Ti
m
e	
(s
)	

Number	of	CPU	Cores	

Parallel	File	System	
Data	Elevator	

1	

10	

100	

1000	

512	 1024	 2048	 4096	

Ti
m
e	
(s
)	

Number	of	CPU	Cores	

Parallel	File	System	
Data	Elevator	

•  Querying data while it is in BB
•  Indexing is 2X faster
•  Querying is 6.5X faster

Conclusions

•  Moving data in hierarchical storage needs to be:
•  Efficient and cause low contention on BB servers
•  Transparent transfers without burden on users and/or app

developers

•  Data Elevator achieves these goals
• … for writing data to PFS

•  Future work
•  Caching and prefetching for data reads
•  More than two levels (node-local, campaign, and archival storage

layers)
•  Tuning of energy consumption and compute node efficiency

Contact: Suren Byna, LBNL, (SByna@lbl.gov)

Thanks to:

